
 

Multi-Modal Freight Transportation System 

Capacity and Diversion Assessment for 

Middle Tennessee 

 

 

 

Project #: RES2016-29 

Final Report 
 

 

 

Submitted to 

Tennessee Department of Transportation 

 

 

 
Janey Camp, Paul Johnson, Jordan Williams, Hiba Baroud 

Vanderbilt Center for Transportation and Operational 

Resiliency (VECTOR) 

 

 

 

 

 

July 1, 2019 



 

ii 
 

 

Technical Report Documentation Page 

1. Report No. RES2016-29 2. Government Accession No. 3. Recipient's Catalog No. 

4. Title and Subtitle 

Multi-Modal Freight Transportation System Capacity and 

Diversion Assessment 

5. Report Date 

May 2018 

6.  Performing Organization Code 

7. Author(s) 

Janey Camp, Paul Johnson, Jordan Williams, Hiba Baroud 

8. Performing Organization Report No. 

TDOT PROJECT # RES2016-29 

9. Performing Organization Name and Address 
 

Vanderbilt Center for Transportation and Operational 

Resiliency, Vanderbilt University, PMB 351831, 2301 Vanderbilt 

Place, Nashville, TN 37235 

10. Work Unit No. (TRAIS) 

11. Contract or Grant No. 

RES2016-29 

12. Sponsoring Agency Name and Address 

Long Range Planning Division, Tennessee Department of 

Transportation, James K. Polk Building, Suite 900, 505 Deaderick 

Street, Nashville, TN 37243-0344 

13. Type of Report and Period Covered 

Final Report 08/2016–05/2018 

14. Sponsoring Agency Code 

15. Supplementary Notes 

16. Abstract 
 The objective of this study was to perform a data-driven, comprehensive analysis of multi-modal freight 

system capacity to understand the capacity of the system overall and be able to simulate and analyze 

impacts of disruptions to the system.  To accomplish this, a multi-modal network of highway and rail 

networks in the middle Tennessee region was created in ArcGIS and then ran through a range of 

disruptive scenarios for analysis.  Ultimately, simulation results were intuitive with real-life expectations. 

Without any disruption, network metrics aligned with empirical FAF and Waybill data. During disruptions, 

rail freight will often prefer switching to the road network, but vice-versa does not hold. For a set of 

disruption scenarios, disruption was most severe when a minimally redundant section of highway was 

impacted. Lesser impacts occurred during rail disruptions and in areas where multiple alternate routes 

existed.  Overall, this project provides proof of concept for an approach to simulate and predict regional 

impacts to freight flow within Middle Tennessee’s multimodal network in the event of disruptions using a 

unique, multi-faceted approach that combines ArcGIS Network Analyst simulations coupled with 

machine learning techniques.  This approach provides a method for identifying critical areas for planned 

response and an understanding of the impacts of disruption on a combined intermodal (highway and 

rail) network in a very active freight region.  

 

 

17. Key Words 

Freight, capacity, rail, highway, diversion 

18. Distribution Statement 

19. Security Classification (of this 

report) Unclassified 

20. Security Classification (of this 

page) Unclassified 

21. No. of 

Pages  

22. Price 

NA 

 

  



 

iii 
 

DISCLAIMER 

This research was funded through the State Research and Planning (SPR) 

Program by the Tennessee Department of Transportation and the Federal 

Highway Administration under RES2016-29, Multi-Modal Freight Transportation 

System Capacity and Diversion Assessment. 

This document is disseminated under the sponsorship of the Tennessee 

Department of Transportation and the United States Department of 

Transportation in the interest of information exchange. The State of Tennessee 

and the United States Government assume no liability of its contents or use 

thereof. 

The contents of this report reflect the views of the author(s) who are solely 

responsible for the facts and accuracy of the material presented. The contents 

do not necessarily reflect the official views of the Tennessee Department of 

Transportation or the United States Department of Transportation. 

 

 

  



 

iv 
 

TABLE OF CONTENTS 
 

TECHNICAL REPORT DOCUMENTATION PAGE ............................................................. II 
LIST OF TABLES ................................................................................................................ V 

LIST OF FIGURES .............................................................................................................. V 
EXECUTIVE SUMMARY.................................................................................................... 1 
 

1. INTRODUCTION ........................................................................................................ 3 
 

2. LITERATURE REVIEW .................................................................................................. 4 
 

3. METHODOLOGY ...................................................................................................... 6 
3.1. Data Preparation and Mapping the Networks .............................................. 6 
3.2. Use of ArcGIS Network Analysis Tool to Calculate Capacity and Other 

Metrics  ................................................................................................................................ 9 
3.3. Use of ArcGIS Network Analysis Tool to Simulate Disruptions ...................... 10 
3.4. Statistical Learning to Predict Future Disruption Impacts ............................ 13 
3.5. Modeling Specific Disruption Scenarios ......................................................... 13 
 

4. RESULTS ................................................................................................................... 15 
4.1. Testing the Multi-Modal Connection Approach .......................................... 15 
4.2. Impacts of Specific Disruptive Scenarios ....................................................... 17 
 

5. CONCLUSIONS AND RECOMMENDATIONS ......................................................... 19 
 

6. REFERENCES ........................................................................................................... 22 
 

APPENDIX 1: DATA PROCESSING ................................................................................ 25 
APPENDIX 2: NETWORK SIMULATION .......................................................................... 29 
APPENDIX 3: STATISTICAL MODELING USING R SOFTWARE ....................................... 32 
 
 
 
 
 
 
 
 
 
 
  



 

v 
 

 

LIST OF TABLES 
 

Table 1:  OD routing options during disruption. .......................................................... 11 

Table 2:  Results from modeled simulations ................................................................ 18 

 

 

LIST OF FIGURES 
Figure 1:  Middle Tennessee area under consideration. ............................................. 8 

Figure 2:  US rail tonnage passing through Tennessee. ............................................... 9 

Figure 3:  Map showing areas for specific disruption scenarios. ............................. 14 

Figure 4:  Atlanta multi-modal network as pilot test of methodology .................... 16 

Figure 5:  Simulation Example. ....................................................................................... 17 

Figure 6:  Comparison of travel time distributions across scenarios. ....................... 18 

Figure 7:  Statistical model results for disruption scenarios. ...................................... 19 



1 

EXECUTIVE SUMMARY 

The objective of this study was to perform a data-driven, comprehensive 

analysis of multi-modal freight system capacity (highway and rail) in the middle 

Tennessee region to understand the system’s capability to: 1) serve the 

anticipated demand for freight (and possibly passenger) traffic and 2) be able 

to accommodate additional commodity flow in the event that diversion is 

needed.  To accomplish this, a multi-modal network of highway and rail 

networks in the middle Tennessee region was created in ArcGIS and then 

subjected to a range of disruptive scenarios for analysis.  FAF and Waybill data 

were utilized to estimate parameters to build the Network Analyst model 

simulations and develop metrics such as volume and capacity for OD pairs 

throughout the system. 

 

Ultimately, simulation results were intuitive. Without any disruption, results aligned 

with those of the empirical data in FAF and Waybill. During disruptions, rail freight 

will sometimes prefer switching to the road network, but vice-versa does not 

hold. This notion makes sense when considering the structure of each network 

within the Middle Tennessee area. Tennessee’s road network is highly redundant 

while the rail network consists of only a few rail lines with few alternative routes.  

This finding limits the prospect of adding capacity for passenger transport to the 

rail lines. In fact, for most cases, it is more efficient for freight that is already 

traveling on road within the Middle Tennessee area to remain on road. 

 

The main takeaway from this analysis is that highly complex, interdependent 

factors involved with transportation network disruptions can be modeled 

effectively with simulation and machine learning techniques. Impacts to the 

system scale intuitively with a disruption’s severity and range of impact but are 

also highly dependent upon where the event takes place along the network. 

This insight can also help identify critical areas for Middle Tennessee’s intermodal 

network.  

 

Middle Tennessee’s redundant road network offers alternative route options that 

are just not available on rail, at least at this scale. For a set of four disruptions 

simulated, disruption was most severe when a minimally redundant section of 

highway was impacted. Lesser impacts occurred during rail disruptions and in 

areas where multiple alternate routes existed.   
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Overall, this analysis provides proof of concept for an approach to simulate and 

predict regional impacts to freight flow within Middle Tennessee’s multimodal 

network in the event of disruptions.  
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1. INTRODUCTION 

 

Tennessee’s economic vitality relies heavily on the timely and efficient flow of 

commodities supported by a multi-modal freight transportation system. There is 

growing concern regarding the ability of such an interconnected system to 

withstand disruptive events and maintain the necessary level of commodity flow 

to support a growing economy and mitigate potential cascading impacts.  

Disruptive events such as the middle Tennessee flooding in May of 2010, which 

shut down portions of both Interstates 24 and 40 for extended periods, as well as 

the Atlanta I-85 bridge collapse in 2017 only highlight the interconnectedness 

and importance of such networks (OEM 2011, Straight 2010). Ideally, multi-modal 

transportation systems include redundancy in the network to ensure effective 

diversion and minimal impacts to supply chains and freight flows in the event of 

a disruption to one or more modes.  

 

Added complexity is introduced when additional, sometimes competing, 

interests and demands are being considered such as a commuter rail service 

that would utilize portions of the freight rail network. A case in point is the 

mobility challenge facing middle Tennessee, where the passenger rail option is 

likely constrained by the near capacity existing rail lines.   

 

The Tennessee Department of Transportation (TDOT) recognized the need to 

better understand better understand such a complex system’s capabilities and 

limitations both under current freight flows and during disruptions.  To assist TDOT 

in achieving this goal, this project focused on developing and applying an 

appropriate methodology to estimate capacity and capabilities of the middle 

Tennessee rail and highway interconnected system for a range of operating 

conditions.   

 

The middle Tennessee region serves as a logical candidate for developing and 

testing the methodology to address these issues due to the area serving as a key 

east-west and north-south corridor, housing the third-largest switching hub in the 

CSX network while experiencing considerable population and business growth.  

This region provided an adequately complicated and important case study 

application with anticipation that the methodology utilized could be replicated 

or expanded to other areas of the state and beyond. 

 

The research activities included the following primary tasks:  (1) obtain and 

prepare necessary data for analysis, (2) determine capacity and identify “hot 

spots”, (3) develop and model scenarios for disruption.  In the following sections, 

the methodology employed and findings from the analysis are presented.   
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2. LITERATURE REVIEW 
 

A review of the literature was performed to identify the best approaches for 

defining and quantifying capacity for the study.   

 

In general, the capacity of a transportation network can be defined as the 

maximum loading that can be achieved on that system in terms of demand 

supplied (i.e., train cars or loaded train cars, commuters, etc. supplied by track 

or road space) or the maximum throughput of demand from origin to 

destination over a given time while maintaining an acceptable level of service.  

Alternatively, capacity can also be thought of as (1) the amount of a 

commodity that can be transported past a single point of measure in one 

direction in a given time or (2) the value of some controlling parameter at which 

unacceptable delays (threshold delays) begin to manifest and propagate 

(Pouryousef, et al. 2015). It is commonly accepted that there are two types of 

capacity, or measures of capacity, and those are theoretical capacity, and 

practical capacity.  The first is an upper bound; the latter is a more reliable 

measure. There is a possible third measure, which is reserve capacity, which 

constrains traffic assignment to the existing traffic pattern ratios and can be 

taken as a lower bound.  

 

Another consideration in evaluating capacity and potential shifts of traffic or 

freight during periods of disruption is flexibility.  Flexibility (in the context of a 

transportation network) can be thought of as the amount of change the 

network (roads, bridges, rail, etc.) can handle or absorb and still perform within 

intended parameters. Change can be in terms of system degradation, demand 

volume, demand pattern and demand type. In other words, flexibility is the 

range of different states a system can occupy, link loading, trip production 

volumes, link accessibility, so forth, while still providing a viable transportation 

network. Reliability is an important concept to incorporate when discussing 

flexibility.  Allan and Billington (1992) state reliability to be the “probability of a 

device [or system] performing its purpose adequately for the period of time 

intended under operating conditions encountered”. As the capacity available 

to fill demand is the primary measure of a transportation network’s 

performance, flexibility of a transportation network is often translated to 

capacity flexibility.    

 

System capacity and flexibility are important measures for planning, design and 

administration purposes and consequently for expanding the capabilities of 

both freight and passenger transportation networks which often overlap and 

utilize the same resources. Meanwhile, demand for freight transportation on rail 

networks has risen 64% domestically in the last three decades (Morlok and 

Chang 2004). Along with freight needs, there is increased interest in commuter 

rail to relieve congestion and pollution from automobiles on highways. Over a 
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decade ago, railway experts came to the conclusion that flexibility is of greater 

importance than speed for assuring that transportation demands are met 

reliably (Morlok and Chang 2004).  

 

Standard approaches for measuring the capacity of a transportation network 

include the following:   

 

1. The bi-level optimization algorithm proposed in “Modeling the 

Capacity and Level of Service of Urban Transportation Networks”, 

which utilizes an adapted ETDA-VDC model to explicitly consider level 

of service and route choice while distributing trip units over a network 

of links and nodes to satisfy origin destination demands and other 

physical constraints (Yang et. al 2000). The result of this algorithm is the 

maximum number of trips that can be accommodated by the system, 

(i.e., its capacity) 

2. Penalty ADDVOL methods proposed in “Measuring Capacity Flexibility 

of Transportation System,” which also use bi-level algorithms to load 

links on a transportation network to produce a lower bound and upper 

bound capacity respectively (Morlok and Chang 2004).  

3. Network Capacity with Limited Flexibility algorithm proposed in 

“Modeling Capacity Flexibility of Transportation Networks” which allows 

for route choice for all trips assigned in addition to the base, existing 

traffic pattern and produces a practical capacity (Chen and 

Kisikitwiwat 2010).  

 

Ideally, all of these methods can be used given limited information about the 

transportation network of focus. A final method that can be used, given 

sufficient information, is a simple but involved string plot method where link 

characteristics are examined along with physical principles to determine 

maximum theoretical capacity along said link, then load the network 

accordingly. Trips can be assigned in this manner using TransCAD or other 

software (AAR 2007). This method constitutes a rough estimate, but can be an 

efficient approach. Note that according the Association of American Railroads 

(AAR) National Rail Study (2007), practical capacity is roughly equal to the 

theoretical capacity scaled by a factor of 0.7. Ultimately, the best method for 

determining capacity will be the one that both planners and railroad 

representatives can agree on and that best reproduces real world existing 

conditions.   

 

The differences that arise between highway and rail transportation largely stem 

from some limiting factors. For instance, it is more difficult to accurately control 

for jerk and stopping distance for highway analysis as there are many individuals 

deciding what parameters are acceptable for themselves. Additionally, 

whereas it is practical to assume that for every trip demand there is an 
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automobile available (at least, road supply will likely run out, before auto 

supply), train car supply and station access are far more limited and require 

careful consideration. Furthermore, train cars can be removed from or added to 

the network at multiple stations sited at discrete locations, autos are assigned to 

trip producing and receiving zones that generalize input and output and node 

interactions such as free flow speed and congestion on ramps, time spent 

parking, and possible flow restrictions due to capacity conflicts. Most of these 

physical constraints can be interpreted in algorithms, or be accounted for via 

careful consideration of data and application of adjustment factors.    

 

For the purposes of this study, capacity of the networks is calculated utilizing 

ArcGIS software for the roadways and rail corridors passing through the Middle 

Tennessee region and primarily Interstate and state highways in the region that 

are most capable of accommodating freight movements.  

 

3. METHODOLOGY 
The methodology applied for this project consists of integrating GIS, simulation, 

and machine learning techniques to estimate and simulate freight movement 

and impacts that disruptions have on multimodal transportation networks. Data 

on transportation disruptions are scarce, and their resulting impacts are largely 

uncertain. The chosen approach attempts to address these issues. Simulation 

techniques allow for the generation of many different scenarios and statistical 

learning techniques help establish bounds of uncertainty on potential impacts.   

 

First, GIS data relevant to the road and rail networks in Middle Tennessee were 

assimilated. The Middle Tennessee area is the focus of this project, but these 

techniques are scalable to other regions of the United States. Second, network 

disruptions for a range of scenarios are simulated via ArcGIS’ Network Analysis 

Tool. Lastly, statistical models are trained on these simulated outcomes to allow 

for intuitive predictions of impacts from future scenarios.  

 

3.1. Data Preparation and Mapping the Networks 

 

In order to construct simulations for Middle Tennessee’s multimodal 

transportation network, assimilating data for US road and rail networks was 

necessary. While inland waterways are also part of Tennessee’s multimodal 

system, that form of transportation is currently out of scope for this project but 

may be considered in future research.  

 

The Highway Network 

 

For the highway network, data for use in this project was obtained from the US 

Bureau of Transportation Statistics’ Freight Analysis Framework (FAF). The key files 
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included a roadway network shapefile, CVS files with corresponding traffic flow 

metrics, and a shapefile outlining the FAF zones. The network shapefile provides 

a georeferenced collection of highways and roads across the US, with 

identifying characteristics defined at various intervals specified by FAF such as 

name, speed limit, miles, number of lanes, and others (Ford 2017). The traffic flow 

metrics consist of items such as freight tonnage, traffic volume, and peak 

capacity for each road segment defined by FAF. These metrics are mapped to 

the accompanying road segment in the network shapefile. The FAF zone file 

was then used to isolate the middle Tennessee region of interest.  

 

Figure 1 below depicts an overview of the assimilated road data, and Appendix 

1 contains details regarding the data processing. The Middle Tennessee FAF 

region was utilized as the focus region for this project (shown as a light yellow 

region in Figure 1).  An additional 50km buffer was created around the region 

(i.e., the light green region in Figure 1) and used for network considerations to  

allow for more realistic routing scenarios within the region (i.e., a truck may 

reasonably travel along a road that is outside Middle Tennessee even if its origin 

and destination lie within the region).  As expected and indicated in the map in 

Figure 1, the interstate highways carry the largest volume of freight traffic in the 

region.   

 

The Rail Network 

For the rail network, data is amalgamated from several sources. First, private 

Waybill data containing origin-destination (OD) rail records was provided by the 

US Department of Transportation (USDOT) via TDOT. A public sample exists for 

general users, but the private data is necessary for in-depth analysis. The Waybill 

data contains rail shipping information such as carloads, tons shipped, and 

commodity type identifiers, but since each record corresponds to an individual 

shipment, records need to be aggregated for each leg of the network in order 

to look at overall traffic flows. US DOT’s Freight Routing Tool was leveraged for 

this task (Wright and Baker 2017). Data processing steps are provided in 

Appendix 1, but essentially, the output consists of a shapefile of aggregated 

Waybill metrics as queried by the user.  Figure 2 below shows an example 

output, depicting all freight tonnage that pass through the state of Tennessee.  

 

Shapefiles of the US rail network and rail stations, the latter of which is used later 

to create the intermodal connections were also obtained from the US DOT. 

Lastly, Oak Ridge National Laboratory provides information on rail capacity, 

which was utilized for this project (Peterson 2014). The sources of information 

were all joined into one rail network. Appendix 1 contains details on creating this 

network.  



 

8 
 

 
Figure 1:  Middle Tennessee area under consideration including the commodity flow service (CFS) area, 

the roadway network area considered and roadways used in the analysis sorted based upon freight 
volume.  

 

Developing a Multi-Modal Network 

The road and rail networks were then interconnected within ArcGIS into a single 

multimodal network. Compatible metrics for average ton-miles per hour 

(volume) and allowable ton-miles per hour (capacity) were derived for each 

transportation mode. The two networks were then connected topologically via 

the rail station junctions for use in simulations considering shifts between modes. 

Appendix 1 contains the exact procedures for creating the multimodal network.  
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Figure 2:  US rail tonnage passing through Tennessee. 

 

 

3.2. Use of ArcGIS Network Analysis Tool to Calculate Capacity and Other 

Metrics 

Using ArcGIS’ Network Analysis Tool, the multimodal network was then leveraged 

to estimate capacity and volume across the entire region as well as simulate 

impacts from disruption scenarios. Utilizing methods from existing literature as a 

premise for our approach (Asakura 1999; Matisziw et al. 2007; Kurauchi et al. 

2009), the process utilized in this study included the following tasks: 

 

• OD pairs were constructed along the multimodal network 

• Routes between each OD pair were simulated based on fastest travel 

time 

• Volume and capacity measurements were accumulated for each 

route for a baseline (no disruption) condition 

• Disruptions of varying size, severity, and location were simulated, 

thereby affecting the route choice between implicated OD pairs 

• The impacts to each OD pair’s accumulated metrics were determined 

under disruption scenarios 

• The aggregated OD pair impacts served as a system-wide assessment 

of the disruption’s effect compared to other disruptions and the 

baseline condition. 

 

Route choice is determined by fastest travel time. For each part of the network, 

travel time, measured in hours, is estimated by multiplying the average speed 

Rail Volume  

Log (KTons) 
 1 

 5 

 10 
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limit of the segment, determined by FAF metrics for roadways and track class for 

railways, by the length of that segment. Transitions between roadways and 

railways are allowed at rail stations, but a time penalty of one hour is incurred for 

an intermodal transfer. This time penalty is based on empirical studies of 

intermodal transfer times (Verma and Verter 2010).  

 

It is important to note that routes are modeled independently of other simulated 

routes. This assumption is not realistic, as everyday traffic jams inconveniently 

illustrate how travel time depends on other vehicles’ route choice. However, 

ArcGIS is currently not capable of handling interdependent routing. Instead, 

impacts from routing interdependencies are calculated in a separate manner, 

discussed later.  

 

The OD pairs are divided into two disparate groups, one for each mode of 

transport. The roadway ODs consist of all the road segments defined in the FAF 

shapefiles, and the railway ODs consist of the rail stations provided by US DOT. 

For each disruption simulation, routes for all OD pairs within each group are 

calculated (i.e. road ODs to road ODs are calculated and rail ODs to rail ODs 

are calculated). Intermodal transport is allowed, but road ODs to rail ODs are 

not explicitly modeled because that choice doesn’t reflect real life 

circumstances (i.e. a train station origin would not likely have a destination in the 

middle of a highway). There are a total of 3702=136,900 road OD pairs and 

2322=53,824 railway OD pairs for the area of middle Tennessee under 

consideration, amounting to 190,724 total routes calculated for each simulation.  

 

For each OD route, accumulated metrics for volume, capacity, travel distance, 

and travel time are measured. The aggregated comparison of volume to 

capacity metrics over all OD pairs serves as an overall indicator for the capacity 

constraints of the entire system. Metrics derived when no disruption is present 

provide a base case for comparison to disruptions. Differences in travel distance 

infer if a reroute takes place in the event of a disruption. Differences in travel 

time are used for several calculations, discussed later. The derivations for all 

these measurements are identified in Appendix 2. 

 

3.3. Use of ArcGIS Network Analysis Tool to Simulate Disruptions 

To test the robustness of the multi-modal network under disruption, disruptions of 

randomly varying size, severity, and location are simulated within the Middle 

Tennessee FAF region. The size of the event ranges from 1 to 65km, as measured 

by the radius of a circle. In actuality, disruptions will likely be asymmetric and/or 

not resemble a circle, but the chosen approach enables efficient simulations 

and accessible interpretability without detracting from main inferences. The 

severity of the event is modeled via a scaled time cost according to how long it 

would take a vehicle to pass through the impacted area: 2 (twice as long), 3, 4, 

and 99 (a complete closure). For simplification purposes, the event is assumed to 
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have an equivalent severity impact on roadways and railways, such as what 

would likely happen during natural disasters. This model assumption could be 

changed at a later time if there is a desire and empirical basis to explore 

impacts of mode-specific scenarios. The centroid of each disruption is 

constrained to the Middle Tennessee region, but the range of impact can 

extend outside this area depending on the radius of impact. In total, 99 different 

random scenarios were simulated.  

 

If a simulated disruption falls onto a route, that route will be affected in one of 

three ways: the route will remain the same but take a longer time to complete, 

a reroute along the same mode of transportation will occur, a reroute involving 

a different mode of transportation will occur. The outcome is based on 

whatever minimizes travel time. For example, a reroute from the rail network tow 

road network occurs. The depicted OD pair’s original route is a direct rail route. 

However, the disruption simulated with a severity of 99 closes the original rail 

route, and an intermodal option becomes the most viable alternative.   

 

All affected routes’ accumulated volume and capacity measurements will also 

change accordingly. The ensuing calculations and assumptions are meant to 

address the aforementioned lack of interdependent routing capabilities within 

ArcGIS (i.e. impacts to traffic volumes are manually derived instead of explicitly 

simulated). Table 1 below provides an overview for the three cases.  

 
Table 1:  OD routing options during disruption. 

 Road Volume Road Capacity Rail Volume Rail Capacity 

Same Route 

 

Volumeold * 

Timenew/Timeold 

 

Capacityold  
Volumeold * 

Timenew/Timeold 
Capacityold  

Reroute – No 

Intermodal 

 

Volumenew +  

0.5 * Volumeold 

 

Capacitynew 

 

Volumenew +  

0.5 * Volumeold 

 

Capacitynew 

Reroute – Rail 

to Road 

 

 

Reroute – Road 

to Rail 

 

IMVolumeold 

 

0 
Volumeold – 

IMVolumeold 
Capacityold 

Volumeold – 

IMVolumenew 
Capacityold IMVolumenew 0 

 

For a given OD pair that is affected by the disruption, if the route follows the 

same path, then its baseline accumulated volume is multiplied by the ratio of 
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the disrupted travel time to the baseline travel time. Capacity remains the same. 

This calculation assumes that routes contained within the disruption will incur a 

volume to capacity strain proportional to that of the relative increase in travel 

time (i.e., double the travel time implies doubling the volume to capacity ratio). 

 

If the simulation determines a reroute is the best if not the only viable alternative 

for a given OD pair, then it must be determined if an intermodal transfer takes 

place. If the rerouting takes place exclusively on the same mode of 

transportation, then the impacted volume equals the disruption simulated 

volume (that accumulated in the alternative route) plus one-half that of the 

baseline path. Capacity is equal to the new route’s accumulated capacity. 

These assumptions are meant to model the real-life situations when traffic gets 

diverted to alternative routes. The new, alternative routes will be subject to their 

original traffic volumes plus additional volume from diverted OD trips. The one-

half comes from a simplifying assumption that, on average, half of the traffic 

from the disrupted route would transferred to the new route. In actuality, this 

percentage can range from 0 to 100 for each route segment, and ideally a 

more detailed measure could be obtained. The challenge with that granular 

approach is that there is not a one to one mapping between OD pairs and 

network segments, as one OD route comprises one or many segments. The 

segment-specific information is lost during the simulations. It is possible to 

indirectly acquire this information via visual inspection of each new OD route but 

becomes impractical when looking at 190,724 routes for 99 different scenarios. 

 

Lastly, if an intermodal reroute occurs, the volumes and capacities of each 

mode of transport need to be taken into account. In simulations where rail 

reroutes to road, the new road volume is equivalent to the intermodal tonnage 

available in the rail’s baseline route. It is assumed that only intermodal cargo 

can be transferred and that all of it will. The new road route’s capacity is set to 

zero, so that the aggregated impacts reflect additional volume placed on the 

roads without also changing road capacity. The rail volume becomes whatever 

the baseline rail volume was minus the baseline intermodal cargo. Rail capacity 

remains the same. The assumption that only intermodal cargo is transferred 

serves as an upper bound for transfers to reflect real-life settings because in the 

simulation, if intermodal routes are found preferable, all of the cargo tends to be 

transferred. Additionally, the amount of intermodal cargo relative to the total 

cargo is small, so the assumption that all of it gets moved in the event of a 

transfer does not skew aggregated results.  

 

For road to rail reroutes, the same concepts are applied. However, because the 

intermodal measurements are derived from the rail network and not the road 

network, due to intermodal data being available in Waybill but not FAF, the 

equations are slightly altered. The implementation of all these calculations is 

shown in Appendix 3. 
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A system-wide impact of the disruption is then estimated by aggregating its 

impacts on all OD pairs. Ultimately, each of the 99 disruptions contains an 

aggregated measurement for volume to capacity, and this measurement 

serves as the dependent variable for statistical modeling.  

 

3.4. Statistical Learning to Predict Future Disruption Impacts 

Statistical models are trained on the simulation data in order to predict the 

impact of a future disruption based on its severity, range, and location. The 

dependent variable (DV) is the system-wide volume to capacity measure, 

which can be compared to the baseline scenario to assess a disruption’s 

impact.  

 

Explanatory factors include 68 predictors: radius of disruption (km), severity of 

impact (scaled cost of time), latitude, longitude, and one binary variable for 

each of the 64 grid points. The grid boxes overlaid on top of the Nashville region 

are used as binary variables within the statistical models (i.e., if grid point 32 is 

impacted by scenario X, then for that model run the variable is coded as a 1). 

Although the exact latitude-longitude coordinates of the disruption are also 

included in the prediction models as explanatory variables, the grid points allow 

for a direct location-based network parameter without relying on an interaction 

of three variables (latitude, longitude, and radius of disruption). Impacts are 

heavily dependent on the network’s structure, and grid-based approaches can 

help identify critical locations (Jenelius and Mattsson 2012; Kim, Chen, and 

Linderman 2015). 

 

Several statistical models and machine learning techniques were attempted to 

minimize prediction errors. Of the 99 simulations, 70 were included in the training 

process and the remainder served as the testing sample. 

 

Models attempted to include multiple linear regressions, lasso regressions, 

principal component regressions, general additive models, random forests, and 

boosted decision trees. It should be noted that all of the models were fit to the 

natural log of the DVs in order to normalize the spread of the residuals. The 

analyses were first conducted on the untransformed DVs, but the magnitude of 

residual errors systemically increased with larger impacts. This bias violated 

underlying assumptions of several of the modeling techniques. Appendix 3 

contains details on the machine learning process employed here. 

 

3.5. Modeling Specific Disruption Scenarios 

Following creation of the multi-modal network and model testing under a range 

of random disruptions, specific disruptive scenarios were developed for testing. 

The scenarios were selected (1) to represent different types of disruption and 

direct modal impacts, (2) to comprise a range of disruption types, and (3) 
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aimed at distributing the impacts across the middle Tennessee region.  Four 

specific scenarios were simulated as listed below and shown in Figure 3.  The 

scenarios consisted of the following: 

 

1. A highway flooding shutdown of Interstate 40 in the vicinity of the 

Harpeth River, West of Nashville (impact radius of 3.57 km). 

2. A CSX rail line hazmat incident near the Tennessee State Capitol and 

Bicentennial Mall in downtown Nashville near the intersection of Rosa 

Parks Boulevard (impact radius of 0.875 km). 

3. A bridge failure disruption at the I-40 and I-65 overpass in South West 

Nashville (impact radius of 0.187 km). 

4. A manmade, targeted rail disruption at Radnor Yard which is located 

south of Nashville near I-65 and Harding Place (impact radius of 0.436 

km).   

 

 
Figure 3:  Map showing areas for specific disruption scenarios. 

For the disruption scenarios, the regions of the map were “blocked off” in the 

ArcGIS Network Analyst as described above and then routing performed across 

the network for all OD pairs.  For each simulation the travel time, travel distance, 

volume, and capacity for each OD route was determined for analysis and 

compared to the base case with no disruptions. 
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4. RESULTS 
The results from the multi-modal network creation, simulation, and disruption 

modeling are discussed in the following sections. 

 

4.1. Testing the Multi-Modal Connection Approach  

The viability of using a multi-modal network within ArcGIS to simulate 

interconnectivities across modes and during times of disruption was a unique 

challenge in this project.  Therefore, the project team chose to first explore and 

test the approach with a recent, actual event that resulted in shifts across 

modes although the shift was in passenger movement as opposed to freight 

movement.  The test case application chosen was a model and simulation of 

the I-85 highway bridge collapse in Atlanta, GA, in 2017.  Following the I-85 

bridge collapse, a reported 25% increase in ridership was observed by the 

Metropolitan Atlanta Rapid Transit Authority (MARTA) as many commuters 

participated in a multi-modal shift from car to train for about six weeks (Khan 

2017).  Traffic flows in the Atlanta region were used to test the mutli-modal 

connectivity approach and its use with the ArcGIS Network Analyst Tool before it 

was utilized for modeling freight movements in middle Tennessee.   

 

In the Atlanta application, the downtown “Five Points” area was considered the 

destination with all traffic originating at county centers in the surrounding area.  

Consecutive links that serviced more than two routes were then singled out as 

key corridors. Key links that serviced diverted traffic in the secondary shortest 

paths were singled out as critical.  The links of the four MARTA lines were added 

to the layer by digitizing from GoogleMaps™, where MARTA stations with parking 

served as transfer points between highway and MARTA lines.  In the test model 

application, all trips originating from outside the Atlanta area destined to 

downtown shifted to MARTA rail lines in the modeled disruption simulation. From 

network demand patterns produced by first order skim-tree analysis, it was 

determined that the rail lines present the most time efficient mode for 

transportation from within the I-285 loop to the city center, when only 

reasonable speed estimates are considered. In short, we were able to 

successfully shift movements in a disruption simulation across modes.  Figure 4 

shows the modeled multi-modal network for Atlanta. 
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Figure 4:  Atlanta multi-modal network as pilot test of methodology 

 

Figure 5 provides an illustration of the simulation process for middle Tennessee. In 

this, the gray lines comprise the multimodal network itself. The blue and orange 

dots entail road and rail OD pairs respectively. The rail OD pairs also correspond 

to rail station locations, allowing for connections between the roadways and 

railways. The large red circle depicts an example disruption area. The weighted 

purple line represents the preferred route for an example OD pair, with labels “1” 

and “2” marking the start and end points respectively. Lastly, the grid boxes are 

used by statistical models to help predict impacts.  
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Figure 5:  Simulation Example:  (light-yellow) Middle Tennessee FAF region, (light-green) multimodal 

network extent, (gray lines) multimodal network, (large red circle) example disruption, (blue points) road 
ODs, (orange) rail ODs/stations, (purple line) example route for one OD pair given the disruption 

depicted. 
 

 

4.2. Impacts of Specific Disruptive Scenarios  

 

For the baseline and the four simulated disruptive scenarios of interest, a 

comparison of the network analyst outputs for each scenario was performed.  

The metrics under consideration (travel time, distance traveled, volume, and 

capacity) were all averaged across the OD pairs and are presented in Table 2.  

In comparison to the base condition (according to the Network Analyst 

simulation) all disruptive scenarios increased the average travel time and 

distance traveled with the exception of the disruption of the I-65 and I-40 which 

only increased minimally and is not reflected in the table.  The greatest 

disruption occurred with the flooding of I-40 in the Bellevue area west of 

Downtown Nashville.  Figure 6 shows the distribution of travel times across the 

OD pairs for the scenarios and the base situation. The lack of redundancy in 

major highways in that region is a key contributor to the impact of disruption on 

I-40 in that scenario.  Capacity also decreased most under that scenario. 
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Table 2:  Results from modeled simulations 

Scenario 

Average 
Travel Time 

(hours) 

Average 
Distance 
Traveled 
(Miles) 

Average 
Volume 

(tonnage/hour) 

Average 
Capacity 

(tonnage/hour) 

Base (no disruptions) 0.84 45.58 100,505 89,638 

Flooding of Harpeth River Impacting I-40 West 
of Nashville 1.01 45.89 109,884 79,998 

Hazmat Incident on Rail near Downtown 
Nashville 0.92 45.69 107,867 89,925 

Disruption at Radnor Rail Yard 0.89 45.79 101,636 90,080 

Overpass Collapse/Failure at the Intersection 
of I-40 and I-65 in Southwest Nashville 0.84 45.67 114,647 88,814 

 

 
Figure 6:  Comparison of travel time distributions across scenarios. 

 

When applying the statistical learning model to the four disruptive scenarios, the 

predictive model most closely replicated the disruptions of the Harpeth River 

flooding on I-40 and the I-65 and the I-40 intersection closure (i.e., “ramp” in the 

results outputs).  Both of these were highway-centric disruptions.  Figure 7 shows 

the ArcGIS Network Analyst results (black dots) for each disruption scenario as 

well as the model estimated values and 95% model confidence interval bounds 

in red.   
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Figure 7:  Statistical model results for disruption scenarios. 

 

This high level of agreement between the statistical model utilizing machine 

learning and the Network Analyst results demonstrates that using a combined, 

multi-faceted approach in this way could prove beneficial to model additional 

scenarios for disruption to identify “hot spots” or overall system impacts for a 

range of disruptive events within one or across multiple modes.    
 
 

5. CONCLUSIONS AND RECOMMENDATIONS 
The objective of this study was to perform a data-driven, comprehensive 

analysis of multi-modal freight system capacity (highway and rail) in the middle 

Tennessee region to understand the system’s capability to: 1) serve the 

anticipated demand for freight (and possibly passenger) traffic and 2) be able 

to accommodate additional commodity flow in the event that diversion is 

needed.  To accomplish this, a multi-modal network of highway and rail 

networks in the middle Tennessee region was created in ArcGIS and then ran 

through a range of disruptive scenarios for analysis.  FAF and Waybill data were 

utilized to estimate parameters to build the Network Analyst model simulations 

and develop metrics such as volume and capacity for OD pairs throughout the 

system. 
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Ultimately, simulation results were intuitive. Without any disruption, results aligned 

with those of the empirical data in FAF and Waybill. Granular route checks also 

showed that chosen alternatives in the event of a disruption did indeed follow 

the shortest possible travel time.  

 

An interesting finding is that when looking at intermodal preferences during 

disruptions, rail freight will often prefer switching to the road network, but vice-

versa does not hold. This notion makes sense when considering the structure of 

each network within the Middle Tennessee area. Tennessee’s road network is 

highly redundant, offering many alternative pathways, as seen in Figure 1. 

However, at this same local scale, its rail network consists of only a handful of rail 

lines with very few alternatives. This finding curtails the idea of using excess 

space on passenger rail to transport freight. In almost all cases, it is more 

efficient for freight that is already traveling on road within the Middle Tennessee 

area to remain on road.  In fact, it appears that there is little flexibility and 

capacity available in the rail network to support freight or passenger diversion, 

while the highway network has the flexibility to support freight diversion from rail 

as well as from disrupted highway links. 

 

The main takeaway from this analysis is that highly complex, interdependent 

factors involved with transportation network disruptions can be modeled 

effectively with simulation and machine learning techniques. Impacts scale 

intuitively with a disruption’s severity and range of impact but are also highly 

dependent upon where the event takes place along the network. Grid-based 

modeling approaches can help identify critical areas, and for Middle 

Tennessee’s intermodal network, northwest Nashville is one of these spots.  

 

A second major takeaway from this analysis is that the intermodal preference in 

the wake of a disruption is one-sided. Middle Tennessee’s redundant road 

network offers alternative route options that are just not available on rail, at least 

at this scale. Modeling road-specific disruptions may change this outcome but 

most likely in a significant manner because of the time lost during intermodal 

transfers.  For a set of disruptions simulated, disruption was most severe when a 

minimally redundant section of highway was impacted. Lesser impacts occurred 

during rail disruptions and in areas where multiple alternate routes existed.   

 

Immediate extensions of this analysis include creating more scenario simulations, 

so the statistical models can have more data to learn from, which would be 

especially helpful in predicting extreme events. Additionally, a main, inherent 

complication with this analysis is the difficulty in validating results against 

historical impacts. This issue is common when modeling network disruptions, as 

real life disruptions are relatively lacking compared to the amount of data 

necessary for establishing precise predictions (He and Liu 2012). Ideally, more 
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granular historical data, perhaps on a daily time-scale, can be obtained and 

used to further tune predictive accuracy.  

 

Additional considerations to expand this work include incorporating Tennessee’s 

inland waterway network within the intermodal framework and/or expanding 

the scale of analysis to include all of Tennessee or perhaps the entire Southeast 

region. Additionally, impacts can be integrated with economic models, so 

policy makers can obtain reasonable fiscal estimates of these disruptions.  

Furthermore, performing the routing using other techniques such as Python script 

beyond the ArcGIS Network Analyst could allow for providing more organic 

interdependent routing and potentially enable better modeling of temporal 

effects such as outage durations, etc. 

 

Overall, this analysis provides a method for simulating and predicting impacts to 

traffic flow within Middle Tennessee’s multimodal network in the event of 

disruptions. The ability to intuitively model impacts of disruptions is crucial, as 

real-life events are limited in both occurrence and data and their impacts are 

highly uncertain. 
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Appendix 1: Data Processing 
 

Data collection and processing is discussed below. 

 

Regarding the roadway network, the following data was collected from FAF 

(http://faf.ornl.gov/faf4/Default.aspx):  

 FAF4 network shapefile (faf4_esri_arcgis.zip) 

 FAF4 zone shapefile (CFS_area_shapefile.zip) 

 FAF4 zone IDs (CFS Area Code – FAF Zone ID.xlsx) 

 Segment flow metrics (assignment_results.zip) 

 

The network shapefile contains the freight roadway network across the US. The 

FAF4 zone shapefile depicts the different regions, as determined by FAF4, across 

the US. Both files are projected in ArcGIS. Based on the zone IDs, region 400 

corresponds to the Nashville/Middle-Tennessee area of interest for this project. 

Within ArcGIS, the FAF4 zone shapefile is then selected to where the CFS12_Area 

field is equal to 400; all other regions are removed from the map. Note this field 

corresponds to the most recent FAF framework; the 2007 field will give slightly 

different regions.  

 

Using ArcGIS Dissolve tool, these regions are then merged into one polygon. 

Using the Buffer tool, a 50km buffer region is extended beyond the merged 

polygon. Using the Clip (Analysis) tool, the network shapefile is then selected to 

include only the roadway intervals that lie within the 50km buffered region. All 

other parts of the roadway network are removed. The clipped network is then 

joined with segment flow metrics via the FAF4_ID field.   

 

The network is now populated with valuable traffic flow metrics for each 

roadway interval. An additional field, time (hours), is created by dividing the 

miles field by the speed limit (miles/hour). Additional fields are also created by 

converting existing metrics to units desired for the analysis. These fields are 

CAP12 * Miles (peak capacity of volume of traffic, number of vehicles, per hour 

multiplied by length of the highway segment), SF12 * Miles (average hourly 

volume of traffic, in number of vehicles, multiplied by length), and Tonsfreight * 

Miles (tons of freight per hour multiplied by length). There is no metric related to 

the capacity of freight specifically, so we use the assumption that the ratio of 

total service flow to total peak capacity is equivalent to the ratio of total freight 

throughput to total freight capacity. 

 

The finalized network from above is imported into a geodatabase as a feature 

class. This feature class must be planarized, essentially splitting all lines at 

intersections to help ensure connectivity throughout the network. Next, 

topological rules are formulated for the planarized feature class to ensure the 

network analysis will perform as expected.  They include the following rules: must 

http://faf.ornl.gov/faf4/Default.aspx
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be a single part (to ensure that all line segments correspond to one highway 

section), must not overlap (to ensure that two line segments do not occupy the 

same space), must not self-overlap (to ensure that a road does not overlap with 

itself), must not self-intersect (to ensure that a given road interval does not form 

a loop with itself), must not intersect (to ensure the planarization worked 

correctly), and must not have dangles (to ensure connectivity). Upon inspection 

of errors, only the last rule is violated. Segments that give rise to these errors that 

are not on the boundary of the network are removed.  

 

The corrected feature class is then exported as a shapefile, and a network 

dataset is created based on this shapefile. Another shapefile is created based 

on the network junction layer that is automatically produced from the network 

creation. The junction layer is dissolved by the SIGN1 and SPD_LIMIT fields to 

produce a point shapefile that will act as the OD input to assess system-wide 

performance 

 

For the rail network, data is amalgamated from several sources, with exact 

references in the main paper: 

 Private Waybill data for rail shipments through Tennessee (from TDOT) 

 Freight Routing Toolkit (from US DOT) 

 US rail network shapefile (from US DOT) 

 US rail station shapefile (from US DOT) 

 Rail capacity shapefile (from Oak Ridge National Laboratory)  

 

Once loaded into SQL Server, or an equivalent relational database 

management system, the Waybill data need to be aggregated for each leg of 

the network in order to look at overall traffic flows. US DOT’s Freight Routing 

Toolkit is leveraged for this task. As the toolkit is proprietary to US DOT, we refer 

the readers to that reference in the main paper for more information on the tool 

and its operating procedures. Essentially, several Python and SQL scripts are 

used to query and aggregate the Waybill data. Results are then projected into 

ArcGIS as a shapefile. The outputs for this analysis are segment flows of 

Expanded Car Tons (that statistical extrapolation of the waybill samples to 

estimate yearly freight volume, in tons), filtered by freight which had an origin or 

destination within Tennessee and by freight which had an origin or destination 

within Tennessee and the cargo had rail-to-road intermodal capabilities. The 

former filter is used for the assumption that in the event that a reroute is 

necessary due to a disruption in the Middle Tennessee area, the rail shipment will 

reroute to another track of the US network prior to reaching Tennessee. 

Therefore, cargo flows of only Tennessee origin or destination are included in this 

analysis. Comparing overall flows to this filter suggest that the proportion of 

through-Tennessee cargo to the proportion of OD-Tennessee cargo is 

reasonable. The latter, additional intermodal criteria is used to assess the 

amount of freight that can realistically be routed to road, given a disruption 
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occurs. Outputs are then converted to hourly ton miles, to align with road 

volume and capacity metrics.  

 

The segment flow outputs are then spatially joined to the US rail network 

shapefile, and similarly with the rail capacity shapefile. There is currently no 

publicly available metric for rail capacity; Bruce Peterson at Oak Ridge National 

Laboratory formulated a segment-level traffic density based on his experience. 

His metric is used to derive segment capacity measurements for this analysis in 

the following equation:  

 

capacitysegment = flowsegment * (densitymedian + 1) / (densitysegment + 1)). 

 

Here, rail capacity is proportional to the amount of volume multiplied by the 

ratio of the median density metric, since it is an ordinal value from 0 to 7, to the 

segment-defined density. The plus ones offer an easy way to avoid dividing by 

zero.  

 

Lastly, the speed limit of all the rail segments is defined at 50mph, the midpoint 

of the speed limits for Class 3 and Class 4 freight tracks. We were not able to find 

publicly available data for granular speed limits on tracks, so this simplifying 

assumption serves as a good average approximation for system-wide speeds. In 

the network simulations, discussed in Appendix 2, simulated routing is ultimately 

governed by average expected travel times, estimated by speed limits. 

Segment level rail speed limits would be ideal, but since the most mainline 

freight tracks are Class 3 or Class 4, this simplifying assumption still allows for 

intuitive interpretations.  

 

Like the road network, this rail network is then clipped by the 50km buffer and 

then subjected to the same topological rule checks.  

 

The data now consist of two shapefiles, a road network and a rail network that 

comprise the Middle Tennessee region. The next step is to connect the two 

networks. 

 

Connecting lines within ArcGIS must first be created from the rail stations to 

each of the networks. ESRI provides good instruction for accomplishing this task 

(https://support.esri.com/en/technical-article/000011815). The end product of 

this procedure is two sets of connection lines and corresponding nodes. All will 

be utilized in the intermodal network assembly. 

 

To assemble the final, interconnected network, seven shapefiles are imported 

into a feature dataset: 

 Road network 

 Rail network 

https://support.esri.com/en/technical-article/000011815
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 Rail stations 

 Connecting lines 1 (road network to rail station) 

 Connecting lines 2 (rail network to rail station) 

 Nodes corresponding to connecting lines 1 

 Nodes corresponding to connecting lines 2 

 

An ArcGIS intermodal network is then created with the above feature classes. 

The road network is connected to the nodes 1, connecting lines 1 are 

connected to nodes 1 and rail stations, connecting lines 2 are connected nodes 

2 to rail stations, and the rail network is connected to nodes 2 and the rail 

stations. The latter part of this last connection is necessary because some 

connecting lines 2 have zero distance because the rail stations are located on 

the rail lines themselves. Since all intermodal traffic will have to pass through 

connecting lines 1, this part of the network is used to enforce the 1 hour time 

penalty associated with switching modes of transportation. The network is then 

configured to use time as an impedance metric (minimizing travel time as an 

objective function) while also accumulating volume, capacity, time, and 

distance metrics. More details on these variables and their role in the simulation 

process are discussed in the main text and Appendix 2.   
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Appendix 2: Network Simulation 

 
Using ArcGIS’s Model Builder and OD Cost Matrix within the Network Analysis 

Tool, routing simulations are iteratively run on the intermodal network. A model 

process diagram is presented below.  

 

 
 

As mentioned in the main text, the OD pairs are divided into two distinct sets, 

one for each mode of transport, so this modeling process is conducted for each 

grouping. The chosen OD pairs are added to the network, and OD Cost Matrix 

solves a routing problem between all pairs, calculating total travel time (hours), 

total distance traveled (miles), total expected freight throughput on road 

(hourly ton-miles), total capacity of the road route (hourly ton-miles), total 

expected freight throughput on rail (hourly ton-miles), total capacity of the rail 

route (hourly ton-miles), and total expected intermodal freight throughput 

(hourly ton-miles). The corresponding equations are provided below.   

 

 Road 

o Volume 

YKTON_12 / (365*24) * MILES /1000 = Freight ton miles per hour 

(volume for each segment) 

o Capacity 

Freight Ton miles per hour (above) * (CAP12 * MILES) / (SF12 * MILES) 

= Freight Ton miles per hour (capacity for each segment) 

 

 Rail 

o Volume 

EXPANDED_TONS / (365 * 24) = Freight ton miles per hour (volume for 

each segment) 

o Capacity 

Freight Ton miles per hour (above) * (DENSITY_median + 1) / 

(DENSITY_segment + 1) 
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Simulated disruptions of randomly varying size, range, and location are then 

added to the iterative process. To accomplish this task, the Random Points tool is 

used to create 99 random points within the Middle Tennessee region. This point 

feature is then updated with two new fields, radius and severity, which are 

randomly populated with values using Python code below.  
 

#Create two fields, "severity" and "radius" 

#Random number for radius (km) 

import arcpy, random 

fc="C:/Users/Paul 

J/Desktop/VECTOR/04TDOT_RouteDiversion/TDOT_GIS_final_routing/TDOT_GIS_final_rout

ing.gdb/random_disruptions_04" 

with arcpy.da.UpdateCursor(fc, "radius") as cur: 

    for row in cur: 

        row[0] = random.randint(1, 65) 

        cur.updateRow(row) 

     

#Random number for severity 2:5 ... will replace 5 w/ 99 after code is run 

import arcpy, random 

fc="C:/Users/Paul 

J/Desktop/VECTOR/04TDOT_RouteDiversion/TDOT_GIS_final_routing/TDOT_GIS_final_rout

ing.gdb/random_disruptions_04" 

with arcpy.da.UpdateCursor(fc, "severity") as cur: 

    for row in cur: 

        row[0] = random.randint(2, 5) 

        cur.updateRow(row) 

 

Take note to replace severity “5” with “99” after the code is run. Each point 

feature is then buffered by the specified radius and incorporated within the 

simulation. A base case, no disruption, is also added to the list. The severity fields 

of this disruption are used as an input to the scaled cost of time travel within the 

network options. The location and radius of the events dictate which routes are 

impacted.  

 

Solutions are saved as line features, which can be exported to CSV files. Figure 6 

below depicts the model. In total, 190,724 routes (136,900 OD pairs plus 52,824 

rail OD pairs) are solved for each scenario, and there are a total of 100 

scenarios (99 disruptions plus the base case). Accumulated network metrics for 

each route for each simulated disruption are compared to those of the base 

case to establish estimates for the total system-wide impacts. These comparisons 

are discussed in the main text.  
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Lastly, grid-based location variables are set up to help train the statistical 

models. These variables are created by overlaying a grid, using the Create 

Fishnet Tool, on top of the Middle Tennessee region. Each scenario is then 

iteratively applied to the grid, flagging which boxes are affected by each 

disruption, outlined below.  
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Appendix 3: Statistical Modeling using R Software 

 
 

The following code shows how outputs from the network simulation are 

processed and used to train statistical models that predict impacts of future 

disruptions.  
 

##############################################################################

##################################  

#LOAD O/D NETWORK ANALYSIS RESULTS FROM ARCGIS 

 

#Batch import csv files from ArcGIS output 

setwd("C:/Users/Paul 

J/Desktop/VECTOR/04TDOT_RouteDiversion/00_Final_Report_TDOT/data_out_road") 

my_files_road <- list.files(pattern = "\\.csv$") 

my_data_road = lapply(my_files_road, read.csv) 

my_data_road = lapply(my_data_road, function(df){ #sort data by OD to make sure files 

aligned 

  df[order(df$OriginID,df$DestinationID),] 

}) 

 

#repeat for rail  

setwd("C:/Users/Paul 

J/Desktop/VECTOR/04TDOT_RouteDiversion/00_Final_Report_TDOT/data_out_rail") 

my_files_rail <- list.files(pattern = "\\.csv$") 

my_data_rail = lapply(my_files_rail, read.csv) 

my_data_rail = lapply(my_data_rail, function(df){ #sort data by OD to make sure files aligned 

  df[order(df$OriginID,df$DestinationID),] 

}) 

 

#save workspace checkpoint 1 

setwd("C:/Users/Paul J/Desktop/VECTOR/04TDOT_RouteDiversion/00_Final_Report_TDOT") 

save.image(file = "checkpoint01_b.RData") 

 

#need to trim road and rail ODs that prefer intermodal in base case  

omit_road=which(my_data_road[[1]]$Total_FLOW_rail>0) #empty 

omit_rail=which(my_data_rail[[1]]$Total_Flow_road>0) #4981 pairs out of 38512 ODs 

my_data_rail=lapply(my_data_rail,function(df){ 

  df=df[-omit_rail,] 

}) 

 

#base case shorthand 

road_00 = my_data_road[[1]] 

rail_00 = my_data_rail[[1]] 

 

#add outputs part 1 
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"/" <- function(x,y) ifelse(y==0,0,base:::"/"(x,y)) 

my_data_road = lapply(my_data_road, function(df){ 

  data.frame(df 

             ,"Time_diff"=df$Total_Time-road_00$Total_Time 

             ,"Miles_diff"=df$Total_Miles-road_00$Total_Miles 

             ,"Flag_reroute"=as.numeric((abs(df$Total_Miles-road_00$Total_Miles))>0.0001) 

             ,"Flag_road"=as.numeric(1) 

             ,"Flag_IM"=as.numeric((abs(df$Total_FLOW_rail_tn-

road_00$Total_FLOW_rail_tn))>0.0001) 

             ,"Cap_road_tons"=df$Total_Flow_road/df$Total_Cap_road*df$Total_TON_road 

  ) 

}) 

 

my_data_rail = lapply(my_data_rail, function(df){ 

  data.frame(df 

             ,"Time_diff"=df$Total_Time-rail_00$Total_Time 

             ,"Miles_diff"=df$Total_Miles-rail_00$Total_Miles 

             ,"Flag_reroute"=as.numeric((abs(df$Total_Miles-rail_00$Total_Miles))>0.0001) 

             ,"Flag_road"=as.numeric(0) 

             ,"Flag_IM"=as.numeric((abs(df$Total_Flow_road-rail_00$Total_Flow_road))>0.0001) 

             ,"Cap_road_tons"=df$Total_Flow_road/df$Total_Cap_road*df$Total_TON_road 

  ) 

}) 

 

#save workspace checkpoint 2 

setwd("C:/Users/Paul J/Desktop/VECTOR/04TDOT_RouteDiversion/00_Final_Report_TDOT") 

save.image(file = "checkpoint02_b.RData") 

 

road_00 = my_data_road[[1]] 

rail_00 = my_data_rail[[1]] 

 

#add outputs part 2 

my_data_road = lapply(my_data_road, function(df){ 

  data.frame(df 

             ,"Road_Vol"=(1-

df$Flag_reroute)*(df$Total_TON_road*df$Total_Time/road_00$Total_Time) 

             + df$Flag_reroute*(1-df$Flag_IM)*(df$Total_TON_road + 

0.5*road_00$Total_TON_road) 

             + 

df$Flag_reroute*df$Flag_IM*(road_00$Total_TON_road*df$Total_Time/road_00$Total_Time

) 

             ,"Road_Cap"=(1-df$Flag_reroute)*(df$Cap_road_tons) 

             + df$Flag_reroute*(1-df$Flag_IM)*(df$Cap_road_tons) 

             + df$Flag_reroute*df$Flag_IM*road_00$Cap_road_tons 

             ,"Rail_Vol"=(1-

df$Flag_reroute)*(df$Total_FLOW_rail_tn*df$Total_Time/road_00$Total_Time) 
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             + df$Flag_reroute*(1-df$Flag_IM)*(df$Total_FLOW_rail_tn + 

0.5*road_00$Total_FLOW_rail_tn) 

             + df$Flag_reroute*df$Flag_IM*(df$Total_FLOW_rail_tn_im) 

             ,"Rail_Cap"=(1-df$Flag_reroute)*(df$Total_CAP_rail_tn) 

             + df$Flag_reroute*(1-df$Flag_IM)*(df$Total_CAP_rail_tn) 

             + df$Flag_reroute*df$Flag_IM*road_00$Total_CAP_rail_tn 

  ) 

}) 

 

my_data_rail = lapply(my_data_rail, function(df){ 

  data.frame(df 

             ,"Road_Vol"=(1-

df$Flag_reroute)*(df$Total_TON_road*df$Total_Time/rail_00$Total_Time) 

             + df$Flag_reroute*(1-df$Flag_IM)*(df$Total_TON_road + 

0.5*rail_00$Total_TON_road) 

             + df$Flag_reroute*df$Flag_IM*(rail_00$Total_FLOW_rail_tn_im) 

             ,"Road_Cap"=(1-df$Flag_reroute)*(df$Cap_road_tons) 

             + df$Flag_reroute*(1-df$Flag_IM)*(df$Cap_road_tons) 

             + df$Flag_reroute*df$Flag_IM*rail_00$Cap_road_tons 

             ,"Rail_Vol"=(1-

df$Flag_reroute)*(df$Total_FLOW_rail_tn*df$Total_Time/rail_00$Total_Time) 

             + df$Flag_reroute*(1-df$Flag_IM)*(df$Total_FLOW_rail_tn + 

0.5*rail_00$Total_FLOW_rail_tn) 

             + df$Flag_reroute*df$Flag_IM*((rail_00$Total_FLOW_rail_tn - 

rail_00$Total_FLOW_rail_tn_im)*df$Total_Time/rail_00$Total_Time) 

             ,"Rail_Cap"=(1-df$Flag_reroute)*(df$Total_CAP_rail_tn) 

             + df$Flag_reroute*(1-df$Flag_IM)*(df$Total_CAP_rail_tn) 

             + df$Flag_reroute*df$Flag_IM*rail_00$Total_CAP_rail_tn 

   ) 

}) 

 

 

road_00 = my_data_road[[1]] 

rail_00 = my_data_rail[[1]] 

 

 

#sum over all rows (O/D pairs) 

sum_data_road = lapply(my_data_road, function(df){ 

  apply(df[,c("Road_Vol","Road_Cap","Rail_Vol","Rail_Cap")],2,sum) 

}) 

sum_data_rail = lapply(my_data_rail, function(df){ 

  apply(df[,c("Road_Vol","Road_Cap","Rail_Vol","Rail_Cap")],2,sum) 

}) 

 

 

#put data in matrix  
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data_out_road = matrix(0,nrow=length(my_data_road),ncol=4 

                  ,dimnames =list(NULL,c("Road_Vol","Road_Cap","Rail_Vol","Rail_Cap"))  

                  ) 

for (i in 1:length(my_data_road)){ 

  data_out_road[i,]=sum_data_road[[i]] 

} 

 

data_out_rail = matrix(0,nrow=length(my_data_rail),ncol=4 

                       ,dimnames =list(NULL,c("Road_Vol","Road_Cap","Rail_Vol","Rail_Cap"))  

) 

for (i in 1:length(my_data_rail)){ 

  data_out_rail[i,]=sum_data_rail[[i]] 

} 

 

#combine in data frame 

data_out=data.frame(data_out_road+data_out_rail) 

 

 

#calculate Volume to Capacity metrics for each 

data_out = data.frame(data_out 

                      ,"VCR_road"=data_out$Road_Vol/data_out$Road_Cap 

                      ,"VCR_rail"=data_out$Rail_Vol/data_out$Rail_Cap 

                      

,"VCR_comb"=(data_out$Road_Vol+data_out$Rail_Vol)/(data_out$Road_Cap+data_out$Rail

_Cap) 

) 

 

#strip out null run and convert to dataframe 

data_out_fr = data.frame(data_out[-1,]) 

 

setwd("C:/Users/Paul J/Desktop/VECTOR/04TDOT_RouteDiversion/00_Final_Report_TDOT") 

save.image(file = "checkpoint03_c.RData") 

 

 

##############################################################################

########################## 

#LOAD DISRUPTION SCENARIO FLAGS FROM ARCGIS  

 

#Batch import csv files from ArcGIS output 

setwd("C:/Users/Paul J/Desktop/CEE5999 Data Analytics R/Project/flags_out") 

my_files2 <- list.files(pattern = "\\.csv$") 

my_data2 <- lapply(my_files2, read.csv) 

flag_arr=matrix(0,nrow=length(my_data2),ncol=64) #64 is number of grids 

 

#find where there are no observations 

ind=t(sapply(my_data2, function(df) {dim(df)})) 
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which(ind[,1]==0) #25 28 31 38 51 55 56 59 72 85 86 88 94 

 

#Within list, convert dataframes to matrices and then create flags in flg_arr for each gridbox 

referenced by each list element 

my_data2_a = lapply(my_data2, function(df) {data.matrix(df)}) 

for (i in 1:99){ 

  if (i %in% which(ind[,1]==0)) 

    {print("No row inserts")}  

  else  

    {flag_arr[i,my_data2_a[[i]][,11]]=1} 

} 

colnames(flag_arr) = paste("grid_",1:64,sep="") 

 

#convert flg_arr to dataframe 

flag_out_fr=data.frame(flag_arr) 

 

##############################################################################

################################## 

#LOAD DISRUPTION SCENARIO INFO FROM ARCGIS 

 

library(readxl) 

random_disruptions_04_a <- read_excel("C:/Users/Paul J/Desktop/CEE5999 Data Analytics 

R/Project/random_disruptions_04_a.xls") 

 

 

##############################################################################

################################## 

#APPEND ALL DATA TOGETHER 

 

data_final=data.frame(random_disruptions_04_a,flag_out_fr,data_out_fr[,-c(1:4)]) 

head(data_final) 

setwd("C:/Users/Paul J/Desktop/VECTOR/04TDOT_RouteDiversion/00_Final_Report_TDOT") 

#save.image(file = "checkpoint04.RData") 

#save(data_final, file="checkpoint04_data_final.RData") 

 

 

##############################################################################

################################## 

#TRAIN STATISTICAL MODEL 

 

#FIELD KEY 

#(1)OID, (2)radius, (3)severity, (4)POINT_X, (5)POINT_Y 

#(6)-(69) grid_1-grid_64 

#(70)VCR_road (71)VCR_rail (72)VCR_comb 

 

library(gbm) 
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library(reshape2) 

library(lattice) 

rmse <- function(resid) {sqrt(mean(resid^2))} 

 

# #Take log of DVs (analysis with raw data shows residual errors increase with event 

magnitude)  

data_final$VCR_road_ln=log(data_final[,"VCR_road"]) 

data_final$VCR_rail_ln=log(data_final[,"VCR_rail"]) 

data_final$VCR_comb_ln=log(data_final[,"VCR_comb"]) 

 

 

#split into train/test 

set.seed(2) 

train= sample(seq(99), 70, replace = FALSE) 

data_train=data_final[train,] 

data_test=data_final[-train,] 

 

 

#Various statistical methods employed: MLR, PCR, LASSO, GAMs, RFs ... Boosted Trees have 

by far the best errors 

#BOOSTED 

TREES########################################################################

####################### 

cv.boost=function(data,k,t,h,d){ 

  set.seed(2) 

  start_time=Sys.time() 

  folds=sample(rep(1:k,length=nrow(data))) 

  tune.trees=seq(from=1000,to=t,by=1000) 

  t_length=t/1000 

  tune.shrink=seq(from=.001,to=h,by=.001) 

  h_length=h/.001 

  tune.depth=seq(from=1,to=d,by=1) 

  cv.err.array=array(NA,dim=c(k,t_length,h_length,d)) 

  in.err.array=array(NA,dim=c(k,t_length,h_length,d)) 

   

  #iterate through all tuning parameters for CV_MSE and InSample_MSE 

  for (w in 1:k){ 

    for (x in 1:t_length){ 

      for (y in 1:h_length){ 

        for (z in 1:d){ 

          boost.fit=gbm(VCR_comb_ln~. 

                        ,data=data[folds!=w,] 

                        ,distribution="gaussian" 

                        ,n.trees=tune.trees[x] 

                        ,shrinkage=tune.shrink[y] 

                        ,interaction.depth=tune.depth[z] 
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                        ,n.minobsinnode = 2) 

          boost.pred=predict(boost.fit,newdata=data[folds==w,],n.trees=tune.trees[x]) 

          cv.err.array[w,x,y,z]=mean((data$VCR_comb_ln[folds==w]-boost.pred)^2) 

          in.err.array[w,x,y,z]=mean((data$VCR_comb_ln[folds!=w]-boost.fit$fit)^2) 

          print(paste(w,x,y,z)) 

        } 

      } 

    } 

  } 

   

  avg.cv.err=apply(cv.err.array,c(2,3,4),mean)  #average across k folds 

  avg.in.err=apply(in.err.array,c(2,3,4),mean)  #average across k folds  

  print(Sys.time()-start_time)  #~1hr to run 

  list.err=list("cv"=avg.cv.err,"in"=avg.in.err) 

  return(list.err) 

} 

 

data_train_clean=data_train[,-c(1,70,71,72,73,74)] #remove Object ID and variables that 

perfectly predict ln(DVs) 

bt.1=cv.boost(data_train_clean,5,6000,.01,4) 

 

#run-time: ~10min 

sqrt(min(bt.1$"cv"))  #0.337 

which(bt.1$"cv"==min(bt.1$"cv"),arr.ind = TRUE)  #1 4 4 

bt.1.melt=melt(bt.1$"cv") 

colnames(bt.1.melt)=c("trees","lamda","depth","MSE") 

wireframe(bt.1.melt$MSE~bt.1.melt$trees*bt.1.melt$lamda|bt.1.melt$depth,screen=list(z=245,x

=-75,y=3) 

          ,drape=TRUE 

          ,col.regions = colorRampPalette(c("blue", "red"))(80)) 

 

bt.1.best=gbm(VCR_comb_ln~. 

              ,data=data_train_clean 

              ,distribution="gaussian" 

              ,n.trees=1000 

              ,shrinkage=.004 

              ,interaction.depth=4 

              ,n.minobsinnode = 2) 

summary(bt.1.best) #severity, radius, grid_52, POINT_Y, grid_37 

plot(data_train$VCR_comb_ln) 

lines(bt.1.best$fit,col="red") 

rmse_bt.1.fit=rmse(bt.1.best$fit-data_train_clean$VCR_comb_ln) #.104 

bt.1.pred=predict(bt.1.best,newdata = data_test, n.trees=1000, shrinkage=.004, 

interaction.depth=4, n.minobsinnode=2) 

rmse_bt.1.pred=rmse(bt.1.pred-data_test$VCR_comb_ln) #0.278; Mean=0.531 SD=0.629 
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##BOOTSTRAP GBM FOR PREDICTION 

INTERVAL####################################################################

#### 

library(boot) 

booty.pred=matrix(NA,nrow=29,ncol=100) 

set.seed(2) 

for (b in 1:100){ 

  boot=sample(1:70,70,replace=TRUE) 

  booty=data_train_clean[boot,] 

  

booty.gbm=gbm(VCR_comb_ln~.,data=booty,distribution="gaussian",n.trees=1000,shrinkage=

.004,interaction.depth=4,n.minobsinnode = 2) 

  booty.pred[,b]=predict(booty.gbm,newdata = data_test, n.trees=1000, shrinkage=.004, 

interaction.depth=4, n.minobsinnode=2) 

} 

 

booty.quantile=matrix(NA,nrow=29,ncol=2) 

for (r in 1:29){ 

  booty.quantile[r,1]=quantile(booty.pred[r,],.05) 

  booty.quantile[r,2]=quantile(booty.pred[r,],.95) 

} 

 

df.gbm=data.frame(1:29,data_test$VCR_comb_ln,bt.1.pred,booty.quantile) 

df.gbm=df.gbm[order(df.gbm$data_test.VCR_comb_ln,df.gbm$bt.1.pred),] 

 

plot(df.gbm$data_test.VCR_comb_ln, xlab="Scenario",ylab="System 

ln(Vol/Cap)",pch=19,ylim=c(0,4)) 

lines(df.gbm$bt.1.pred,col="red",lwd=2,type="l") 

lines(df.gbm$X1,col="red",lty=3) 

lines(df.gbm$X2,col="red",lty=3) 

legend("topleft",legend=c("prediction","95% PI"),col="red", 

       lwd=2,bty="n",cex=1,lty=c(1,3)) 

 

 

setwd("C:/Users/Paul J/Desktop/VECTOR/04TDOT_RouteDiversion/00_Final_Report_TDOT") 

save.image(file = "checkpoint05.RData") 

 


	Structure Bookmarks
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure




Accessibility Report


		Filename: 

		RES2016-29-FreightCapacity-Diversion%20FinalReport_approved.pdf




		Report created by: 

		

		Organization: 

		




[Enter personal and organization information through the Preferences > Identity dialog.]


Summary


The checker found no problems in this document.


		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 0

		Passed: 30

		Failed: 0




Detailed Report


		Document



		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content



		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms



		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text



		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables



		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Passed		Tables must have a summary

		Lists



		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings



		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting






Back to Top


